REPORT NO. GDC DDF66-007

AUTOMATIC MALFUNCTION ANALYSIS
BY DISCRETE NETWORK SIMULATION

APPENDIX C

PROGRAMMERS REFERENCE MANUAL
AUTOMATIC MALFUNCTION ANALYSIS PROGRAMS

N67 1737767 17375

FAGILITY FORM 602

GPO PRICE $ GENERAL DYNAMICS
- Convair Division

CFSTI PRICE(S) $

Hard copy (HC) 2 xZ
Microfiche (MF ()0

ff 853 July 85

REPORT NO. GDC DDF66-007

AUTOMATIC MALFUNCTION ANALYSIS
BY DISCRETE NETWORK SIMULATION

APPENDIX C

PROGRAMMERS REFERENCE MANUAL
AUTOMATIC MALFUNCTION ANALYSIS PROGRAMS

OCTOBER 1966

Submitted to
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
GEORGE C. MARSHALL SPACE FLIGHT CENTER
HUNTSVILLE, ALABAMA
under

CONTRACT NAS8 -~ 20016

Prepared by

CONVAIR DIVISION OF GENERAL DYNAMICS
HUNTSVILLE, ALABAMA

TABLE OF CONTENTS

PART ONE

AUTOMATIC MALFUNCTION ANALYSIS PROGRAM

Purpose

Restrictions

Storage

Timing

Method

Definitions

Failure Candidacy

Effective Value

Conditional and Unconditional Functions
Appendix A: Program Procedures and Fiow Charts
Appendix B: Data Maps

Appendix C: AMA Output Tape Format

PART TWO

AUTOMATIC MALFUNCTION ANALYSIS EDITOR PROGRAM /

Purpose

Restrictions

Storage

Use

Method

Appendix A: Program Procedures and Flow Charts
Appendix B: Data Maps and Storage

0 0 00 =1 U

A Lo
O O

49
49
50
52
54
56
83

3
E

AUTOMATIC MALFUNCTION ANALYSIS PROGRAM (#3998)

AUTHOR

D. R. Diaddigo

General Dynamics/Convair

Scientific Programming and Analysis (595-0)
8 August 1966

PURPOSE

For each point of scan in the test procedure for the S-1C checkout system,
the DNS simulator produces a list of the component states for proper
functioning of the system. The Automatic Malfunction Analysis Program
then considers, on the assumption the modelled Discrete Inputs are
monitored, what modelled components failures in the system could cause
various DI's or combination of DI's to fail. It produces a list of effect -
cause relationships for the AMA-Editor Program (4012) which produces
the search tapes for the RCA110,

RESTRICTIONS

(1) Program must run on 7090/94 with IBJOB systems capability

(2) In addition to system input and output, four additional magnetic
tape units are required.

STORAGE

Program/Sub-program Function

A. FORTRAN IV

1. Amaz

—
N

Driver

2. Analyz 2. (a) Determine variables that can affect
the value of equation

(bj Identify and flag conditionals
(c) Identify and flag reverse legs
1

[
.

10.

11.

12,

13.

14.

15.

16.

17.

Conclx

Condit

Data

Docasz

Enctex

Evaluz

Expcx

Fcasez

Fefez

Letz

Negstx

Packz

Presox

Setcax

Setupz

10.

11.

12,

13.

14.

15.

16.

17.

Auxiliary conditional analysis routine -
solution of conditional string of variables

Auxiliary conditional analysis routine -
creation of conditional variable and branch
flags.

Block data - for tapes and storage limits

Main logical control over conditional and
unconditional procedure for each list

Auxiliary routine to carry effects into
higher common branch points.

Evaluation of equation according to list
input to verify consistency

Auxiliary conditional analysis routine -
rearrangement of conditional information
to aid in solution

Set up tables according to current list for
solution and tape information for editor

OQOutput routine

(a) Effect - cause BCD print

(b) Effect - cause records for AMA
Editor Program

Auiliary routine for page titling and
line control

Auxiliary analysis routine to check for
stopping on reverse leg processing

Auxiliary routine to control causes
sequencing through model equations

Main logic driver for solution of conditional
and creation of conditional solutions table

Initialization of flags and tables prior to
processing of list

Initial table read in and set up

18. Soltrx 18. Storage of conditional solutions table

19. Subsol 19. Substitution of conditional solution for
' encountered conditional variable

B. IBMAP:
1. Atapez 1. Reading of Simulation List input tape
2. Convrx 2. Binary to BCD translation
3. Edstat 3. Packing of DI states for list for AMA
Editor
4. Effrec 4. Reduction of encountered matrix for effects
record for AMA Editor
5. Equexp 9. Expansion of equation bit coding for
processing
6. Fnrins 6. Insertion of various analysis flags
7. Fnrret 7. Retrieval of various analysis flags
8. Fnrzer 8. Deletion of various analysis flags
9. Fud 9. Identification of special magnetic tapes
10. Konaux 10. Conditional Analysis flag creation and
retrieval
11. Rtvdm 11. Auxiliary routines for creation of common
point levels and bit position identification
12. Simdat 12. Retrieval of simulation input data flags
13. Stgmnp 13. Insertion of effected DI bits in common
branch points matrix
14. Tranl 14. Translation from variable code to three
letter code
15. Varaux 15. Unpacking of complete variable status

flags

TIMING;:

USE:

A. Tapes

Fortran Logical .

2.5 minutes/list for S-1C model

To set up program for operation 4 magnetic
tapes and one specification card are required

System Function

Tape Function

11
9

A(2)
A(1)
B(1)
B(2)

Simulation Input

DT &C AMA tape

AMA Editor tape
Terminal variable matrix

B. Specifications Card (all values integer)

Field Columns
1 1-6
2 7-12
3 13-18
4 19-24

Function
Test Control

0 - Any reactions remaining terminates
job

1 - Any reactions remaining in list
terminates the list

2 - Any reactions remaining inconsis-
tencies are noted, action discontinues
on branch, but processing continues
in list

Output Option

0 - BCD print of effect, causes
and AMA Editor tapes

1 - BCD print only
2 - AMA Editor tape only

The first N variables are to be treated
as common branch points

The first M variables are the active
variables in the model

METHOD:

A.

First procedure cxecuted by program is set up of basic tables.

(1)

(2)

3)

4)

The input tape [rom DT&C program (3843A) is read for the coded
cquations table and the function reference table.

The input from preprocessor - editor program (4019) is read and
the static common point level of each of the common branch points
is computed and inserted into the function reference table.

Limits for:

a) Equation table

b) Function reference table,

¢) Encountered common branch point matrix, and
d) Working area for analysis are defined

I'lags on the DI's are set

Each list encountered from the simulator input tape institutes the
following procedure.

(1)

(2)

(3)

4)

All flags (state, encountered, processed, etc.) are cleared from
function reference table.

The input state list is processed and the states are inserted into the
function reference table. The packed state list for the DI's are
transmitted to the AMA Editor.

An initial pass over the function reference table is made to identify
conditional functions and find solutions for them. A section of the
working area is then assigned to hold the conditional function
solution and appropriate flags are set in the function reference table
to identify the conditional and to indicate whether it has a solution.

For each common point level two passes are made over the function
reference table (common branch point section) and for each common

branch at this level the analysis procedure is initiated.

a) 1. Inthe first pass the actual common branch relationship is
determined.

2. In the second pass the failure components are investigated.

b) The first variable encountered is the common branch itself and
the terminal DI's that it will affect are either the DI itself, if

5

the process is at level one, or a combination of DI's, stored by
bits in the Encountered Common Branch Matrix, if the process is
at a higher level.

The equation for the variables under consideration is expanded
producing a set of variables, whose equations will also be expanded.
The sct of variables consists ol those in the equation whose
assumption of the opposite valuc than the one they hold will change
the value of the equation in which they occur. Each variable is
investigated for following conditions.

1. Common branch level

a) If higher branch level, the processing of the variable is
stopped, until its level is processed, and it is flagged
as encountered with the terminals through which it has
been encountered inserted into its position in the
Encountered Matrix.

b) If of the same level, the variable is investigated further.
2. Negation Stoppage

If the negation flag is set the variable is the reverse leg

opposite to the direction of Analysis, whose failure would be

a contradiction. The variable is then deleted from the set.

3. Failure Candidacy

Dependent on the value of the variable the variable is inserted
into the causes list.

4. Conditional - if the variable is identified as a conditional,
its solution if it exists is retrieved from the solution list and
added to the set, and the variable is deleted from the set.

5. Initiator

If the variable has no further expansion, it is deleted from the
set and processing continues with the next variable in the set.

6. Transaction Variable

If the variable has not been deleted from the set under conditions
(1), (2), (4) or (5) its equation is expanded and new variables
are added to the list if they can contribute to failure. The
variable is then deleted from the set.

At the end of each step the set of variables is repacked so
that the next variable to be investigated moves to the top of
the set.

When the set is depleted for the initial variable, processing
continues with the next variable at the same branch level,
after transmitting effect and causes to the AMA Editor.

When variables at this branch level are completed, the program
processes the next branch level and upon completion of all
branch levels, the list is considered complete and it proceeds
to the next case,.

d) The common branch points processcd arc thosc only actually
encountered through lower level branches (c) (1) above. A flag in
the function reference table is used for this, and to prevent re-
processing variables encountered through various branches, a has
been processed flag is also set. (In the prepass, a separate flag
is used for the same purpose).

DEFINITIONS:

1. Common Point Level - The preprocessor editor program (4019) in a section
of its processing defines the relationship between terminals (Discrete
Inputs) and the components in the network. The number of terminals
connected to the component is the common point level of the component. It
is not necessary to assign common point levels to non-branch variables,
since they will have the same level as the branch through which they are
encountered,

2. Common Branch Point (Static) - If a variable has a direct effect on
variables of lower common point level, then it is a common branch point.
The analysis loops are based on static branch point level.

3. Common Branch Point (Dynamic) - In certain model states, a static common
branch can become a non-branch point. The case in which this occurs is
the modeling for the forward-reverse legs in the system. Dependent
upon the current flow direction, the nodes connected by this type leg,
can, 1) both be considered common branches with the same effect, 2)
both common branches with independent effects, or 3) one node becomes
the common branch and the second determines only the connectivity with the
rest of the circuit. The criterion for determining the actual common branch
status is whether the node is encountered independently of its partner.
The prepass, mentioned in the method, is used to determine this and the
true effect on the system for these type cases.

FAILURE CANDIDACY

When the value of an equation is zero or onc, then only those variables in the
equation whose effective value is zero or one can cause failure. But to be
entered into the causes list, the component itself must be capable of failure
in that state, otherwise it can be used only to establish connectivity.

As an example:

A leg carries power between nodes. If its value is one (current is passing
through), it can fail and cut off the flow of current of its own accord. But
if no current is passing through then it can fail, assuming power, only if
other component, such as a contact, fails in such a way as to permit
current through. Thus, in the first instance it will be listed as a possible

source of failure, and in the second, it will be used only to lead back to the
contact which is the possible source of failure.

EFFECTIVE VALUE

The state of a component may be opposite its effect on the system at a
particular time. This is expressed by usage of the /operator. Thus:

A =B * /C where value of C is 0, indicates that its effective value is

1, and C is considered for failure under the conditions that
itis 1.

CONDITIONAL AND UNCONDITIONAL FUNCTIONS

If the change of state of individual components in an equation changes the value
of the equation then the equation is unconditional , and these variables are
entered directly into the set of variables to be processed further.

Examples:

(a) A=B+ C + D where the values of A, B, C, D, are zero

(b)

Either B, C or D assuming the value of 1 can cause the value of
A to become 1, giving three unconditional solutions to the problem.

A =B * C *D where all values are 1. The resultant solutions are
as above, B, C and D are the unconditional solutions.

If however, the change of value of an equation depends upon the
simultaneous change of state of two or more variables, then the function

is conditional. There is a solution to the equation only on the condition
that there is a set of variables, anyone of which can cause the simultaneous

8

failure of the conditional with its failure.

Examples:

(¢ A=B*C*D

(d A=B+C*D

A function may have
Example:

() A=B+C*D

where all values are zero. If B, C and D are in turn the
function of the same variable E whose change of state
changes their states then E is the solution. Otherwise
there is no solution. There of course may be several,

where the states of all variables are 1. Then the
solution to the problem consists of finding those common
variables that can cause either B and C to fail or B and
D to fail.

both unconditional and conditional solutions.

where all valucs are 0. The solutions are B and the
set of variables that cause both C and D to assume the
values of 1 simultaneously.

The program treats the above as conditional with B as one of the solutions.

APPENDIX A: PROGRAM PROCEDURES AND FLOW CHARTS

References to data items are made to Appendix B outlining data storage and
labeled commons.

Subroutines are discussed in alphabetical order with an explanation of their

options and techniques and their interrelationship with other programs through
labeled commons,

Fortran Routines
1. AMAZ - Main driver

a) Set up tables

b) Initialize tables for list
c) Read list and set states
d) If last list exit

¢) Perform analysis

f) Continue from b

2. ANALYZ
CALL ANALYZ (NCPL, ILL)
Performs analysis on variable (JFUNC) specified in /BRHPRS/

a. Validates equation value. If value is inconsistent, a message is
printed and action taken in accordance with input specification.

b. Examines each variable on left side of equation for possible malfunction
dependent on value of equation. Possible malfunctions are placed in list
in /STREF/ under control of NAMLI¥ of /BRHPRS/ for further processing.

c. If function is conditional, the conditional variables are flagged with
their branch numbers, NNCON of /CONPRS/ indicates position and
KONDF is the flag.

d. Negated variables are flagged in function reference table and their
identifications are placed in upper section of /STREF/ under control

10

: of INEG of /BRHPRS/ for flag clearance at end of common branch
| processing.

e. Common point levels are assigned to variables not placed in the common
branch point category during the conditional presolution process by using
the common branch point's level through which they were encountered.
This is to prevent the attachment of failure causes to the improper level
when solution substitution takes place.

f. Analysis contains another error message to indicate if a parenthesis,
which is not acceptable in this version of AMA, has occurred in an
equation. The run terminates with this error message.

Two dummy variables in calling sequence.

NCPL - 1, routine has been called during conditional presolution
(PRESOL). Options taken are to carry down common point
levels and ignore inconsistency message.

2, routine has been called from unconditional analysis
(DOCASE). Options faken are check for inconsistency and
bypass carrying down common point level.

ILL - routine sets ILL to 1, if inconsistency is encountered.
Calling program decides on action if control is returned.

3. CONCBX
CALL CONCBR (MST)

Dummy variable MST is set to 1 if all branches of a conditional have
terminated in solutions. Otherwise it is set to zero.

Procedure: (1) The conditional identification of the latest variable
added to the conditional list

(2) All variables having this identification are separated
according to their branch identifications.

(3) The expansion of the conditional list is then solved.
Any variable assigned to all branches is a solution. One
reference is retained and all others deleted. The variable
is not processed further for this conditional.
Routine used only during PRESOL.

11

4,

(V]

CONDIX
CALL CONDIT

1. Sets conditional id KONID of /CONPRS/ to 1 for conditional
function

2. Carries down the conditional id into each variable assocaited with
the conditional function, retaining the branch number.

3. If a conditional has independent term (e.g., A=B*C +D*E,
all values zero, there are two terms that can be solved independ-
ently for solution) KONID is changed for each.

4. The number of branches is determined, (for zero's conditional, the
number of variables in each term are counted, for one's conditional,
the highest branch number is the number of branches), and the flag
word consisting of KONID, NBRAN, and JFUNC is created for the

conditional function.

5. NNCON is positioned, past the flag words, for the first variable in
the conditional for further processing.

DATA
Block data subroutine
Presents
1. MTITLE to blanks
2. IEND to 18500 (current limit of ISTORE)
3. Tape assingments /IODEFS/
DOCASZ
CALL DOCASE
Executes procedures B 3) and B 4) described under Method.
a. Working storage in /STREF/ is defined by position counter NAMLIS.

b. Common point level of operation is defined by ICCPL,

c. The variable under investigation is JFUNC, always a position within

/STREF/. The variable status is expanded from the function reference

table into /VARSTS/.

12

|
d. JFTERM defines the common branch point under analysis. JFTERM
is always the variable code number. ‘
e. NAMLIX is a position within /STREF/ used to define the upper limit |
of possible variable failure associated with the common branch.
f. LSPEC (2) is used to control the output of the effect-causes results.
g. INEG is used to define the beginning position in /STREF/ where the
negated variable encountered has been stored. (Table goes to IEND),
ENCTEX

CALL ENCTER

If during the processing of a common branch point, a higher common branch
is encountered as a failure possibility this routine is entered to transfer
terminal effect from the current common branch to the higher encountered
common branch.,

a.

b.

EVALUZ

JFTERM defines the branch point which encountered the higher branch.

JFUNC defines the branch encountered.

Transfer of terminal effects are made from row assigned to JFTERM
in encountered Matrix to row assigned to variable defined by JFUNC.

If JFTERM is one of the terminals (SNTERM) its bit configuration is
computed and transferred to JFUNC's row.

JFUNC is flagged as encountered for processing when DOCASE driver
reaches its common branch level.

CALL EVALU

From /EQSKEL/ which contains the expansion of the equation with symbol or
variable code per word, EVALU retrieves the current variable values and
computes the value of the equation storing it into EQUVAL.,

EXPCX

CALL EXPCON

Expansion of conditional function variable set for solution by CONCBR routine,

13

10.

a. Limits of search are defined by NNCON and NAMLIX,

b. Conditional function searched for and number of branches is defined by
ID and NBKON of /CONSOL/.

c. [Expansion of the conditional goes into /STREF/ starting at NAMLIX + 1.

d. If a variable occurs more than once in the same branch, the later
occurrences are erased.

e. The beginning and end positions of the solution Matrix are set into
IN and NAL of /CONSOL/.

FCASEZ

CALL FCASE (NONE) - Read list and set function reference table for
processing of case.

.

b.

C.

d.

Simulation of data is read into IBIOT of /RW/

Tests on type of control card (* in first position of first word) against
internal data statement for which following actions are taken

1) *TITLE - title (if first) is transmitted to /MTITLE/ for run
titling and to AMA Editor. All other titles are ignored.

2) *$$$$$ - transmit 'EOFEOF' to AMA Editor and set NONE to 0 to
signal termination of job to driver,

3) *LIST - set flag so that incoming data is treated as variable state
data. Transmittedto AMA Editor after block, step, sub-step

numbers are converted.

4) *END LIST - creation of profile record for AMA Editor. Erasure
of flag for state data.

5) *ACTIONS - set flag for action data.

6) *END ACTIONS - determine if reactions remain and take action as
specified by LSPEC (1).

List data - if variable occurs as 1 in list set value bit of function
reference table to 1 for the variable.

Action data - determine if data is reaction or input and maintain counts.

14

11.

12,

13.

14.

FCFCBZ
CALL FCFCB(INAME, IKIND)

INAME £ 0 . store cause INAME into KCFC buffer and increase ICFCC.

INAME =0 output current buffer under LSPEC (2) option. If option
includes print translate buffers to 3 - letter codes before
printing.

IKIND = 0 output EFFECT record.

=1 output CAUSES record.
LCTZ

CALL LCT (LENT, LADD, LFA) - Print control

LENT =1 Increase line count by LADD, if it exceeds maximum
(currently 50), reset and print new page title, title only
if LFA = 1, subtitle for variable identification if LFA = 2

=2 Set line count to 0
=3 Set page count and line count = 0
=4 Same as 3

NEGSTX

CALL NEGSTP (NFLAG, IVAR)
a. Expand equation for IVAR into /STREF/ starting at NAMLIX + 1.

b. If IVAR contains the negation of the JFUNC variable code, set
NFLAG =1.

PACKZ
CALL PACKIT
In section of ISTORE of /STREF/ defined by position limiters NAMLIS and

NAMLIX, the data is repacked to eliminate cells that have been zeroed out,
giving a new value to NAMLIX,

15

15. PRESOL
CALL PRESOL - Executes section described in B 3) under Method.

a. The storage for conditional solutions, ICONS of /CONCXX/ is set
to start at IFREE of /STREF/.

b. The working storage in /STREF/ from IFREE to IEND is divided into
two sections.

1. 1/3 to store conditional solutions, and
2. last 2/3's for variable lists, negation data, equation

and conditional branch expansion.

c. LEVEL is set to control definition of conditional branches for
ANALYZ.

d. KONR to indicate conditional identification.

e. NNCON, NAMLIX to define limits of working area where variable
set for a particular conditional is stored.

f. ICX - holds position of conditional identification, in variable list
of conditional currently under solution.

g. Parameters in /VARSTS/, /BRHPRS/, /REFTAB/ are used in same
manner as in DOCASE,

h. ICTSX of /CONCXX/ is set to upper limit of conditional solution
storage and NAMLIS for DOCASE will start in the position afterwards.

16. SETCAX
CALL SETCAS
a. Before entry into FCASE, the function reference table is cleared of
all flags with exception of encountered flags on terminals, state value
on inactive variables, and all common point levels and equation
references.
b. The encountered branch point Matrix area is cleared.
17. SETUPZ

CALL SETUP

Procedure outlined under A in Method is exectued.

16

a. All tape input is into KCFC of /EFFCAU/.

b. Equation table is read into ISTORE of /STREF/ and its position
limits IEQT, IEQX are set into /EQUTAB/.

c. Specification card is placed in LSPEC of /RW/.

d. Function reference table is read and /REFTAB/ is set for limits
IFNRT, IFNRX.

e. Terminal variable Matrix is read and common level established for
common branch points, Maximum common level, ICPMAX, is
established.

f. Limit positions are set for terminals (IFTER), common branch
points (IFCBT) and active variables (IFNAV) as well as the
number of terminals NTERM for /REFTAB/.

g. Function reference table for each variable is expanded into
/VARSTS/ and printed.

h. Limit positions ITVDM, ITVDX and row (ITVRW) and column
(inwords, ITVCL) are set in /TVMTAB/ for the encountered
canmon branch point Matrix.

i. Encountered flags are set for the terminals.

j. IFREE of /STREF/ is set to indicate the beginning of working
storage.

18. SOLTRX
CALL SOLTRF

a, -JIFUNC is stored to indicate the variable the conditional solution
pertains to.

b. The solution stored between NNCON and NAMLIX is transferred.

c. ICTSX is repositioned to indicate the limit of conditional solution
storage.

19. SUBSOX
CALL SUBSOL
a, JIFUNC is the solution to be retrieved.

17

b. Scarch is conducted between limits ICONS and ICTSX.

c. Solution is transferred into positions starting with NAMLIX + 1
and NAMLIX is reset.

Map Routines

1.

ATAPEZ

a. CALL BOPEN - open simulator input tape.

b. CALL BOTRED - read simulator record into IBIOT of /RW/.

If tape is redundant, message is printed and job terminated.

CONVRX

I = CONVRT (A)

The binary number A is converted to BCD image with leading blanks.
EDSTAT

CALL EDSTAT (N)

Operating on function reference table between limits IFNRT and IFTER

the list profile on the terminals is created for the AMA Editor into

KCFC of /EFFCAU/.

N is set to the number of words in profile.

EFFREC

CALL EFFREC (A)

For the row of the encountered branch point Matrix starting at A, determine
which of the NTERM terminals are effected by this common branch. Trans-
late the bits into their implied variable code position and store in KCFC
and the final count into ICFCC of /EFFCAU/.

EQUEXP

CALL EQUEXP (A, N, B)

a. Expands equation whose position reference is A into array B and set
total number of operators and variables into N.

18

b.

C.

Each operator is flagged as negative with value between 1 and 7.

Each variable code has positive sign.

FNRINS

The argument A for all entries indicates a position for the function reference
table within /STREF/.

Argucment A is position

a. CALL CPLINS (A)
b. CALL HBEINS (A)
c. CALL HBPINS (A)
d. CALL NEGINS (A)
e. CALL LEVINS (A)
f. CALL HBCINS (A)
g. CALL HBKINS (A)
h. CALL KSLINS (A)
FNRRET

a. I-CPLRET (A)
b. I =VALRET (A)
c. I=EQURET (A)
d. I :VARRET (A)
FNRZER

Argucment A is position

a.

CALL ZRPV (A)

7090 word is S, 1-35.

Insert comrnon point level from VARCPL of
/VARSTS/ into bits (6-17).

Set has been encountered position, bit 5, to 1.

Set has been processed position, bit 2, to 1.

Set negation flag, bit 18, to 1.

Set conditional branch, or level, bits 3-15 to value
of LEVEL, This insertion is not into the function
reference table,

Set has been checked flag, bit 19, to 1.

Set conditional identification, bit 20, to 1.

Set conditional solution flag, bit 1, to 1.

within ISTORE
Retrieve common point level as integer B35.
Retrieve variable value as integer B35.

Retrieve equation reference, bits 21-35, as an
index.

Retrieve variable code, bits 21-35, as an index.

in ISTORE

Zero value, processed, conditionality,
negation, checked flags (Bit S, 1, 2, 18-20).

19

10.

11.

12.

b. CALL ZREPV (A)

c. CALL ZREPV (A)

d. CALL LEVZER (A)

c. CALL NEGZER (A)

Zero above flags including encountered (Bits S,
1, 2, 5, 18-20).

Zero all flags cxcept value (Bits 1, 2, 5, 18-20).

Zero conditionality branch (Bits 3-15).

Zero negative flag (Bit 18).

FUD - tape assignments cards.

KONAUX

Argument A is a position within ISTORE,

a. I=KOBRET (A)

Retrieve conditional branch(es) number,
bits 1-10.

b. CALL KONDEF (A) Expand conditional information into,

c. 1=JIDRET (A)

d. CALL KONINS (A)

RTVDM

a. I=RTVDM (N)

b. J=IBCOV (N, L)

SIMDAT

a. 1=SCHRET (A)

b. 1=IXDRET (A)

c. I=ITYRET (A)

NBRAN - branch(es),
KONID - conditional id,
KONR - associated variable.

Conditional level, bits 3-17, retrieval.

Create conditional process word from NBRAN
and KONID assuming variable is already in A.

translated N into a word and bit position
of KCFC and retrieves the bit.

translated N into word position J (position start
at 0) and store bit configuration into L.

Retrieve first BCD character of IBIOT (1) of
/RW/ and insert leading zeroes.

Retrieve address of IBIOT (2) (Index code).

Retrieve data type Bits 3-17 from IBIOT (2).

20

13. STGMNP

a. CALL MERGI (WORD, A) - Merge WORD into position A of ISTORE.

b. CALL MERSTG (POS 1, POS 2, N) - Merge N words starting at
Pos 1 of ISTORE into
corresponding number of
words starting at POS 2.

14. TRANL
CALL TRANS (N, M)

Translate an index code N into a 3-letter alpha code with trailing

blanks. The translated name is stored in M.

15. VARAUX
CALL VARDEF (A)

Unpack the function reference word in position A of ISTORE into
/VARSTS/ and CONPRS/.

21

ANALYZ
Develop

failure
analysis

EQUEXP

equation

EVALU

Evaluate
equation

Pre- Flag
: Yes
;%lll)tll‘llli inconsistent

l Yes
Initialize TRANS
conditional T al{ﬂ}‘ﬂetg
flags letter code
Initialize .
negation, 1, Print
c:,',‘&;f !ﬁn;gs inconsistency
!
L]
Equation
processing

Yes
Operator
?

Translate

code into

position
(IVP}

fre-
solution
NCPL-=1)

Jghle
et

Figure A-1. ANALYZ (1)

22

Set
cont{"gl

from variable

value and

leg

variable
code for
ater clearance

to control
from variable

Go to
control
IX
JIX:I X =3 +1x=4,|z lrx:s,s,ls,u
Variable + operator / operator (,) operator
{equation (equation (equation {equation
i value = 0) value = 0) value 0 or 1) value 0, 1)
' :
Zero Set value Write
conditional of 1 flag error
flag message
i

Erase
negation
indicator

variable

in failure

possibility
list

:

Increase
conditionality
counter

®

Increase

count tli'olnlﬁ

level

!

Reset
conxfitionn.l
pointer
and flag

Figure

Reset

conditional
pointer and
flag

A-2.

ANALYZ (2)

23

lxx:s

operator
2ero's
analysis

Zer
:::gﬁ%!,%a

Increase
conditional
counter
and level

®

Variable
(equation
value = 1)

Zero
negation
flag

Figure A-3.

24

Void term
reget list
pointer

1D(=ll

+ operator
(equation
value = 1)

Set void
term and

zero negation

ANALYZ (3)

Increase
conditional
counter and
level

Update
conditional
pointer

Reset
void
term

*Operator
(equation
value = 1)

Increase
conditional
counter and

Zero
conditional
flags

]

Set
conditional
counter
=0

X=2, 10

= Operator
(equation
value =1, 0)

Figure A-4. ANALYZ (4)

25

X=7,15

* Operator
(equation
value =1, 0)

CONCBR
Conditional
solution

rocess

Set complete
solution
flag = 0

KONDEF
Obtain
conditional

1

Search
for conditional
flag word

Set pointer
for associated
variables

Set number
of branches
for expansion

Set solution
flag=0

O —

Obtain
variable from
expansion

Set
solution
flag =1

Clear
conditional
flags on
first occurence

Zero
all other Set
occurences complete
from list solution = 1
Return

Figure A-5. CONCBX

26

Condit
storage of
conditional
variabl

Set
conditional
idto1

Set number

branches
=0

KOLRET
Retrieve

Position
pointer for
TOCess. 3

odt Sounter 1

Increase
branch
number

Figure A-6. CONDIX

27

AMA for
a list

PRESOL

Pre-solve
conditional

[Btart working]
storage at end
of solution

Set first
common point
level loop to
tex:

Begin
common level
processing

Print
common
point level

Set control
for
double pass

Set for
pass over
function

Figure A-7. DOCASE (1)

28

variable
to
index code

Set negation
variable
storlget to

w#ﬁ%&’ area;

Make branch

causes list

Set current

variable
equal to

L_branch pojnt |

End

of causes
st

Retrieve
variable
from list

Variable
negated
?

Figure A-8. DOCASE (2)

29

SUBSOL
Bubstitute
solution

Set
conditional
—# solution
flag = 1

HBPINS

Figure A-9.

Set has been

\ processed

Check for
failure
candidacy

8

Ay
?
No

DOCASE (3)

30

No

Transfer
terminal
to effects

buffer

Set
effects out
flag

Figure A-10. DOCASE (4)

31

Yes /Variable

analysis of
variable

Delete
variable
from list

NEGZER
Clear
negation

pass

reference
pass to start
past terminals

Figure A-11. DOCASE (5)

32

FDARK:
Read &
up case for
rocessi

setéype
flag =17

BOTRED
read tape
record

Identify
Control

(E) »{ Print Control
Card

Control Tgpe
=1 =3,7 =4 =5
* * List
Ends-?ifsd.ta * Title data; ‘le:ntd * Actions
unidentifiable "
Set v Zero input
tormination Write AMA reate AMA & reaction
Editor ditor profil

flag=0 tape record counters

Return Tnt:ntf;;'etlﬂe Output to

buffer

Figure A-12. FCASE (1)

33

* End
actions

— Convert
message =
sub-get
for print
Exit
Delete
list from
AMA editor
tape
Data
Print
message
Data
type
control
Print
impact and
—® L eaction
counts =1,2,4,6, 7 =3 ”
) }:::ble List Action
» m:hm data
Yes{ Increase
ariable wo
o count
=0
No
IXDET renction
ZXDE1 reaction
table o
position
Set table
value
=1

Figure A-13. FCASE (2)

34

PRESOL *
Pre-solve
conditional
{__functions

Set
conditional
selution &
work area

Start
processing
of functions

Initialize
negation
and list

positions

Initialize
conditional
flags

ANALYZ
Perform
analysis

Set
conditional
list flags

Figure A-14. PRESOL (1)

35

Create
space for
extra
conditionals

Set
()___. condjtional
- list counter
o,

for {1

Set for
processing
conditional

tahle

VAR
Retrieve
variable
code from /
list _/

Variable
definition

Erase
variable
from list

Figure A-15. PRESOL (2)

36

Set position Set
for
transfer

SUBSOL
Substitute
solution

ANALYZ \

Analyze
equation /

éOIIDEF
e T T | Carry dovn
ccn:ii:ion;‘.

Siaps,

CONCBR

Attempt
solution

Reposition

nd o
conditional
tist

Figure A-16. PRESOL (3)

37

Create
space for
conditional

HBKINS
Fl ag functio
conditional

Set flags
for processing]
new
conditional

Repack
solution in
conditional

Xigt

C'e-a N Rep?stition
inter
negation Egck to
originai

Figure A-17. PRESOL (4)

38

APPENDIX B: DATA MAPS

I. DATA WORD PACKED FORMATS

A.

Equation Packing

Variable names are reduced to 15 bit binary codes, representing
their index codes, and operator to 6 bit binary codes by the DT&C
program (3843A). Each equation's packed format begins a new word
with the packing left justified in all words. The codes which
represent the operator codes, used by the AMA program are:

70 - * | and operator

71 - ..+ , Or operator

72 - / , not operator

76 - . , equation termination

All equations are packed in one table in ISTORE. No identification
separates the equations. Reference is made to the table by way of

the first address, through the function reference table, which gives

the left-hand member of the equation. Termination of an equation's
processing occurs when the processing program encounters the 76 code.

Function Reference Data Item

All thirty-six bits of the 7090 word are used for each entry in the
table. Significance of the bits are:

S - value of variable (- for 1, + for 0)

1 - if 1, the function is conditional and has a solution
if 0, the function is conditional, it has no solution

2 - if 1, the variable has been processed on previous
encounterance at a particular branch level

39

3, 4 - Failure candidacy

0 - not a failure candidate
1 - failure candidate in one's state
2 - failure cnadidate in zero's state
3 - failure candidate in either state
5 - if 1, variable has been encountered through lower

common point level
6-17 - variable's common point level

18 - if 1, the variable has been encountered as a negation
of an equation's analysis

19 - if 1, same function of bit 2, but used on prepass
20 - if 1, function is conditional

21-35 - position within the equation table where this variable's
equation occurs. If 0, the variable is an initiator.

C. Encountered Common Branch Point Matrix
1. Position

if N is the number of terminals, the number of words assigned in
this table to a common branchis I =(M - N) *I+ 1.

2. Bit Significance

Since the DI's are set up to be the first variables in system
definition, they then will have the first index code assignment.
Once the position for a common branch has been determined

the terminals which it affects can be determined by the implied
position of its corresponding bit. Thus, the sign position
indicates the DI whose variable index code is 1, bit 35
represents the DI whose variable index code is 36, bit 4 of word
2 indicates the DI whose variable index code is 41, etc.

40

D.

Conditional Processing Variable Format

1. Function

S - position is set to 1
1-10 - number of branches in function
11-20 - identification of conditional

21-35

i

conditional variable, position within function reference

2. Branch member

S -
1-10 - branch to which variable belongs
11-20 - identification of conditional to which variable belongs
21-35 - variable, position within function reference
3. Solution

Before entrance into solution storage, a solution variable
consists only of bits 21-35 containing the variable position
code. All others are zero.

1I. COMMONS

A.

Major common is /STREF/ which contains the table storage
1. /STREF/IFREE, IEND, ISTORE (18500)
IFREE - position of first word beyond permanent storage

IEND - contains the value of the maximum limit of ISTORE,
currently 18500

ISTORE - table and work area
2. Configuration of ISTORE

a. Permanent storage

41

1) Equation table

ISTORE (IEQT) to ISTORE (IEQ X)(IEQT = 1)
2) Function reference table

ISTORE (IFNRT) to ISTORE (IFNRX) (IFNRT = IEQX + 1)
3) Encountered common branch matrix

ISTORE (ITVDM) to ISTORE (ITVDMX) (ITVDM = IFNRX + 1)
Case storage
1) Conditional solutions

ISTORE (ICONS) to ISTORE (ICTSX) (ICONS = ITVDMX + 1)
2) Working area

a. ISTORE (NAMLIS) to ISTORE (IEND)

1) NAMLIS for pre-solution of conditionals is
(IEND - IFREE) * 2/3

2) for unconditional, ICTSX + 1
b. Negation variables
ISTORE (INEG) to ISTORE (IEND)
INEG is incremented backwards from IEND

c. Negation test variable expansion, conditional
solution rearrangement

ISTORE (NAMLIX + 1) to ISTORE (IEND)
d. Variable failure, conditional branches list
ISTORE (NAMLIS) to ISTORE (NAMLIX)

e. Conditional solution before transfer, conditional
list processing

ISTORE (NNCON) to ISTORE (NAMLIX)

42

Other Commons

1. Unconditional branch processing

/BRHPRS/JFTERM - index code of current common branch
JFUNC - variable position code of current variable
NAMLIS - start of variable failure or conditional
branches list
NAMLIX - end of variable failures list, conditional
branches list, conditional solutions list
INEG ~ first address of list of negated variables

2. Conditional branch processing

/CONPRS/KONID - conditional identification

KONDF - conditional solution flag, conditional
item counter

KONR - conditional identifier, conditional
function code

LEVEL - conditional branch identifier in initial
equation processing

NNCON - conditional list processing position value

NBRAN - branch(es) identifier for coded conditional

elements

3. Equation unpacking

/EQSKEL/EQUVAL equation value

NSKEL

number of items in equation unpacked form
EQSKEL(400) - unpacked equation

a) index is set positive

43

b) operator is set negative

-1,*
-2, +
—3’/
-7, .

4. Equation table control
/EQUTAB/IEQT - first position in ISTORE
IEQX - last position in ISTORE
5. Function reference table control

/REFTAB/NTERM - number of DI's in model

IFNRT - first position in ISTORE

IFNRX - last position in ISTORE

IFTER - last position of terminal references in
ISTORE

IFCBT - last position of common branch point
reference in ISTORE

IFNAV - last position of active variable

references in ISTORE
6. Variable definition
/VARSTS/VARVAL - value
VARHBP - has been processed flag
VARHBE - has been encountered flag
VARCAD - failure candidacy code
VARCPL - common point level

VAREQF - equation reference

44

10.

VARNEG -

VARHBC -

VARHBK -
Conditional solving

/CONSOL/ID

IN -

NAL -

NBKON

Common level definition

/CPLPRS/ICPMAX

ICCPL

Tape definition

/IODEFS/KAMATS

KTVDM

KAMAMC
Title

/MTITLE /MTITLE (12)

45

negation flag
prepass has been processed flag

conditional function flag

conditional identification on which
the solution will be attempted

beginning cell of expansion for
solution

last cell of expansion for solution

number of branches in conditional

maximum common point level

current common point level of
processing

input from DT&C
input from preprocessor editor

output to AMA Editor

- Title from simulator, data set
initially to blanks

11.

12.

13.

14.

Encountercd branch matrix

‘/TVMTAB/ITVDM -~ [lirst position in ISTORE

ITVDMX

last position in ISTORE

ITVRW - number of rows in matrix (number
of common branches)

ITVCL

number of words to express the
terminal effects for each common
branch

Effect - causes

/EFFCAU/ICFCC

number of words in buffer

KCFC(250) - (a) index codes for either causes
or effects

(b) three-letter codes for either
causes or effects

Simulator input, specification card
/RW /IBIOT (20) - simulator input buffer
LSPEC (4) - input card specifications
Conditional solutions
/CONCXX/ICONS - first storage position in ISTORE

ICTSX - last position in ISTORE

46

APPENDIX C: AMA OUTPUT TAPE FORMAT

The AMA produces one output tape which serves as input to the AMA Editor
program.

Format is as follows.
A. 1. First word of each record is the number of words in the record
2. Second word is the BCD identification of the record
B. First record on tape is the title
Word 1: 14
Word 2: *TITLE
Words 3-15: Title

C. Each case of the run has following format

1. Word 1: 14

Word 2: *LIST

Word 9: - Block-step substep
2. Word 1: N

Word 2: *STATE

Words 3-N + 1: Bit pattern showing the on/off states of DI's

47

3. LElfcct-causes records in sets of two records a piece

Effect:
Word 1: N
Word 2: EFFECT

Words 3-N + 1: index codes of terminal effects

Causes:
Word 1: N
Word 2: CAUSES

Words 3-N + 1: index codes of causes
These records are repeated until next *LIST, or end of tape.

D. Tape may be multiple reel. Each end-of-file causes the call for a new
tape. The final tape has the format:

Word 1: 14

Word 2: EOFEOF

48

PART TWO

N7 17378

AUTOMATIC MALFUNCTION ANALYSIS EDITOR PROGRAM

AUTOMATIC MALFUNCTION ANALYSIS EDITOR PROGRAM

AUTHOR

D. R. Diaddigo
General Dynamics/Convair

Scientific Programming and Analysis
31 March 1966

PURPOSE

The results of automatic malfunction analysis are stored on magnetic tape
in separate and intermixed records of failure effects (restricted to DI's)
and possible failure causes. Effects and causes are specified using the
Discrete Network Simulator internal index codes. The function of the
edit and tape generator is to:

1) Correlate internal codes with DI number to produce search keys,

2) Perform the translation between the internal codes and the
original model names to produce the lists of failure causes,

3) Reorder the data based on search keys for direct search by a
RCA 110 program and create the codes for correlating the effects
with the cause lists, and

4) Produce tapes for RCA 110 containing the search keys, correlation
codes, failure causes lists, and a hard copy print of the failure
causes list.

RESTRICTIONS

1) Program must run on 7090 with IBJOB systems capability;

2) In addition to system input and output units, five magnetic tape
units for special input/output are required.

49

STORAGE

Program/Subprogram Name

1))

2)

3)

4)

6)

)

8)

9)

10)

11)

AMAQUT
CAUPAX
CAUPAK
CAUUPK
CONVRT
DIAUX

DITRAN

DIPART, DISEP

DINT

DION

DNSINP

DTCINP

EFFCOM

EFFDET

EFFMUL

50

Function

Driver

Internal packing for failure causes
Internal unpacking

Binary to BCD conversion

Identification and translation of
DI number in model

Auxiliary routines for search
key creation and manipulation

Driver to translate DI's, set up
core for proper correlation with
AMA data

Create on/off state records for
DI's in model for each BLOCK,
STEP, SUBSTEP

Control input/output of AMA
generated data

Control input/output of translation
between internal codes and model
names

Check and modify for redundant
failure effect data

Process failure effect records,
creating internal coded forms
and partial search keys

Control storage of multiple
failure effects

STORAGE (Continued)

12) ERRMES

13) MALPRT

14) MALSTR

15) MALTAP

16) MALTEM

17) MALTRS

18) MDIAUX
MDITRS
MDIMSK
MDIREP
MDIADX
MDIUPO
MDIMST
MDISE P

19) MIDQUT

20) NAMMAL

21) NAREPK

22) NGNPX

23) PRGMAX

24) RCA110

51

Error message prints

Creation of failure causes printed
lists and tape

Core storage and control of
failure causes data

Buffer storage for failure causes
lists

Intermediate tape I/¢, preliminary
to final translation of failure cause
lists

Auxiliary routine to control internal
coding of failure causes

Auxiliary routines to control internal
coding and storage for multiple
effects

Create final search keys for
multiple failure effects

Create case storage for original
model name translation

Auxiliary routine to produce
proper packing for RCA 110
failure causes model names

Control of creation of static DI
information records

Auxiliary routine for DIPN for bit
manipulation

Buffer storage and tape control
for RCA110-AMA tape

STORAGE (Continued)

“USE

25) RCAPAX

26) RCASWT

27) RCATAX

RCAQPN,
RCAWRT,
RCAEQF
MALWRT
MALE@QF
STARED
STACPY

28) SDIAUX
SDCNT
SDIMAL
SDIMST
SDUNP

29) SDIGUT

30) UNITS

Data packer for RCA110 word
[ormat

Control for multiple RCA110-AMA
tapes

Input-output IOCS routines for
RCA110 tapes and static data

Auxiliary routines for internal
core storage and coding of single
failure effect data

Control and arrangement of
single failure effect data for output

File assignments for Fortran
logical units

The program operates in three modes, with corresponding changes in tape
requirements. The selection of the operating mode is controlled by the
first data card, the configuration of which is:

Modec 1:

Col. 1-6 contain the word ACTIVE
7-12 number of blocks in run

13-72 blank

This mode assumes that no static data is to be included on the malfunction
set data tape, so that no merge is attempted.

Tape requirements are:

Fortran Logical = System Function Tape

11 AQ) Index-code Name Dictionary

12 A(2) AMA effect-causes tape

13 A(3) RCA110-Malfunction 'Sets

14 B(1) RCA110-AMA

2 UT2 Intermediate Tape for temporary
storage of internal malfunction
set codes

Mode 2:

Col. 1-6 contain the word STATIC
7-12 number of blocks in run

This mode is used when a data tape is to be created for later merge with
the RCA110 tapes.

Tape requirements are:

Fortran Logical System Function Tape.
11 A(1) Same
12 A(2) Same
14 B(1) Static AMA data and associated

malfunction sets
15 B(2) Intermediate
2 UT?2 Same
Mode 3:

Col. 1-6 contain the word MERGE
7-12 number of blocks in run

This mode is used to produce RCA110 tapes with active DI AMA data
and static data combined with malfunction sets.

53

Tape requirements are:

Fortran Logical System Function Tape
11 A(1) . Same
12 A(2) Same
13 A(3) Combined malfunction sets and

static data ‘
14 B(1) RCA110-AMA data for active DI's

15 B(2) Previously created (mode 2)
static data

2 UT2 Same

Following this card an identification card is added, which is transmitted
to the RCA110 tapes.

Cols. 1-66 Identification
METHOD
The procedure followed by the program is:
1) Set up control parameter for ACTIVE, STATIC or MERGE runs.
2) Read identification card.
3) Ready tapes.
4) Develop and place identifying codes on RCA110 tapes.
5) Initialize malfunction set core storage, identify and correlate DI
numbers and codes for test procedure. If merge runs, place static

data on malfunction set tpae.

6) For BLOCK loop, maintain count of BLOCK and compare with
number of blocks in run to establish exit point.

7) For each SUBSTEP - the procedure used

a) Create BLOCK, STEP, SUBSTEP identification

54

b)

c)

d)

e)

Read effect record and determine DI configuration and
storage positions.

Read causes record and store malfunction set or determine
if it has already been processed (Malfunction sets pertain to
cntire test procedure) and store the internal set number with
the appropriate effect storage. Translation between the
internal set number and the external number is maintained.

Repeat b) & c) until next SUBSTEP or end-of-tape is
encountered.

At end-of-substep

(1) Output single DI failure effect, with
malfunction set number translated

(2) Perform reordering cycle for multiple failure
effects, output search keys and translated
malfunction set numbers

(f) Repeat a) to e) until end of tape is encountered.

8) At the
a)
b)
c)

d)

e)

f)

end of AMA data input

End RCA110-AMA data input

Output the collected malfunction sets on a temporary tape
Read Index-Code-Model Name Translation tape

Re-read the temporary tape, translate the index coding of
the malfunction set to model names and place the sets on
tape and print on system output unit. (If static run, send

to AMA data tape).

If merge run, copy malfunction sets from static tape onto
the RCA110-malfunction set tape.

End tape.

9) End run.

95

APPENDIX A: PROGRAM PROCEDURES AND FLOW CHARTS

Reference to data items are made to Appendix B outlining data storage and the
labeled commons.

The main program driver outline appears under method, and the flow charts appear
at the end of this section.

Subroutines are discussed in alphabetical order with an explanation of their options
and techniques and their interrelationship with other programs through labeled

common.
ROUTINES

2. CAUPAX - Two entries

CALL CAUPAK - Pack index codes indicating the causes from /DNSDAT /
into /DNSDAT/ under DNSCNT control.

CALL CAUUPK - (Address of malfunction set to be unpacked, address of
array to unpack into)

3. CONVRX - Used as function to connect binary to BCD

X = CONVRT (NUM), number is returned in accumulation right-justified
with leading blanks.

4. DIAUX - Auxiliary DI number processing routines. Three entries:
CALL DITRAN

Words from /NAME / searching for DI configuration as DIXXXX,
where XXXX is DI number. Number is connected to binary (B17)
and stored in DIBIN of /DICON/. Its word and bit configuration

is computed on the basis of its binary number, assuming that

word 1 of a 63 word profile contains DI's 23-0 in that order, word 2
contains DI's 47-24, etc. This is placed into DICON of /DICON/.

56

CALIL DIPART (Address of 63 word profile)

Routine is entered assuming that DICON of /DICON/ has the complete
word configuration (bit and word position) for oring into 63 word
profile.

CALL DISEP - Uses /DICON/ Common

DIC@N contains DI profile configurations and the routine separates

it into word position (B35), stored in DIWRD and bit configuration,
stored in DIBIT

5. DINX - Processes Index-Name tape for DI's. Routine assumes DI's are the
first names on the tape and the processing is terminated on first
non-DI.

CALL DINT -

Routine passes name through /NAME / to DITRAN and returns the
Binary and profile configurations through /DIC®N/ which are then
stored in the single DI section of /AMADAT /. The active DI code
profile is placed in PARDIS of /PARDIS/.

6. DIPX -

CALL DIPN - Routine is called upon the reading *STATE record from
failure effect-causes tape.

Since the DI's are assumed to start with index code 1, the program
loops from 1 to the terminating index code retrieving from the on/off
state words in /DNSDAT/ the code for each DI through routine
PROMAS. If the state is '1' DIPART is used to store the bit into the
proper word of DIONOF of /PARDIS/.

7. DNSINP

CALL DNSINP - Reads AMA failure effect-causes tape and determines the
type of record.
Data is read into /DNSDAT/
Count in DNSCNT and succeeding data into /DNSDAT /.

Identification of control word (DNSDAT (1)) is placed in AMATYP,
whose values are

1. *TITLE
2. *LIST
3. EFFECT

57

4. CAUSES
5. EQFEQF
6. *STATE
One terminating error controls the inputting of unidentifiable data.

8. DTCINX

CALL DTCINP(N) - Reads data from index-name tape.
N =1 Identify record, setting DTCTYP of
/NAME/ to 1, for *NAMES control
2, for *REFERENCE control
3, for no id

N =2 Transmit name or end names flag to calling routine. Name buffers
are read in /DNSDAT/. Names are transferred through
/NAME / with name length (words) in NAMLEN, index code in
INDEX, DTCTYP set to 3, and the name in NAME.

9. EFFCOX
CALL EFFCOM

Routine works from /FAILDI/ common. If a single effect is involved
it checks the appropriate code words of the single DI block of
/AMADAT / based on the NCOD value. If a multiple effect is involved
it checks through the chain based on the NDI value. If a duplicate

is found in either case IDUP is set negative; otherwise, it is positive.

10. EFFDEX
CALL EFFDET

Works from /DNSDAT/ reducing the EFFECT record to the proper
word configuration for storage into /AMADAT/. No configuration to
be compared in EFFCPM and stored (SDIMST/MDIMST) is placed in
/FAILDI/ setting NDI to the number of DI's involved, NC®D to the
number of words in the multiple DI configuration (or position in
section 1 of /AMADAT/ for single DI), and DICODE with the 63 word
profile configuration. (DI's occupying the same word are used
together and the vector is ordered by word position number).

11. EFFMUX
CALL EFFMUL - Store multiple DI failure effect configuration. Stores
DICODE into next available words of section 2 of /AMADAT/ and

uses MDIUPD to update the chain lists in AMADAT and form the
control configuration word.

58

12,

13.

14.

15,

ERRMEX

Error Message routine

MALPRX

Call ERRMES(N), where N is the error encountered. All errors
produce an immediate termination from the program and each

indicates an error in format/loading of either the index code-variable
tape or the AMA tape.

Production of malfunction set tape and hard copy print.

Routines operate under control of /MALMAS/ using MALTEM to
retrieve the decoded malfunction set number and components, the
configuration 2 setup of /AMADAT/ to determine the external names
and lengths and NAREPK to reform the name in RCA110 format.
Under a static control run it adds 10000 to both tape and hard copy
malfunction set number. Under merge control it adds AMA static
search keys and malfunction set data onto the Malfunction Set Tape

through STACPY. The hard copy print is done directly through this
routine.

MALSTR - Set up Section 3 of /AMADAT/

CALL MALSTR - malfunction set to be stored is contained in /DNSDAT /

MALTAX

and its length in /MALSET/. It is immediately packed into /DNSDAT /
through CAUPAK routine.

(1) If malfunction set pertains to single DI, it checks directly
against the malfunction set setup for the particular DI on last
substep. If it has remained the same, no further action;
otherwise (2) is executed.

(2) Search the stored malfunction set up to this point (section 3 of
/AMADAT/). If this has been stored before /MALSET/ is set
to the matching address; if not a new malfunction set is created
and the position information of /MALMAS/ is updated.

Controls output to malfunction set tape.

If under control of a static run, data is set to RCA110-AMA tape.

CALL MALTAP (N, IDT, ICNT)

N is optional entry

59

N - 1, write the MALFUNCTIONS id for tape's malfunction set data.

N =3, store ICNT words of information from IDT into /IRCA/ output buffer.
N =2, initialize buffer storage and execute option N = 3,

N = 4, pack according to RCA110 format and write information onto tape.

N =5, end tape with EQF's

Uses MALWRT MALEQF for tape writing
RCAWRT RCAE@F

16." MALTEX
CALL MALTEM(N)

N =1, under control of /MALMAS/ the routine unpacks each
malfunction set (CAUUPK from /AMADAT/ into /DNSDAT/ and
/MACSET/), and places it as a separate logical record on temporary
tape (UT2). Each set occupies a separate logical record.

N =2, read a single malfunction set into core (/DNSDAT/ , /MALSET/)

17. MALTRX - Two entries

CALL MALTRS (Address of malfunction set control word)
Picks up control word and separates out the word count and external

set value in /MALSET/.
CALL MALCTR

From /MALSET/ and /MALMAS/ form control word for malfunction
storage. Control word is in /MALSET/.

18. MDIAUX - Seven entries

CALL MDITRS (Address of multiple DI control word)
From storage in section 2 of /AMADAT/ separate out word count,
malfunction set, and control word into /MDIMAL/.

CALL MDIMSK (Configuration for DI, word to place configuration in)
To build up multiple effect but configuration word by oring together
bit patterns of same words of 63 word profiles.

CALL MDIREP (multiple DI configuration storage)

To create replacement word configuration for search keys. Operates
from /FAILDI/ where configuration of last search key on tape is
located and forms the replacement word sequence into /REPLAC/.

60

(a) Words not directly replaced by the new
multiple DI, have zeroing words created
for them.

(b) Direct replacements and new additions are
stored directly into /REPLAC/.

CALL MDIADX (Address containing a multiple chain reference)

Separates out the multiple chain address into /MDIMAL/

CALL MDIUPD

From /MDIMAL/ create and store the information necessary to
maintain chain lists of multiple effects of the same level.

CALL MDIMST (Address of multiple DI control word)

From /MALSET/ store malfunction into a multiple DI configuration
control word.

CALL MDISEP (Address of word to decode)
Decode a multiple DI bit-word position control word into /MDIMAL/.

19. MDIQUX - Control of output for multiple DI failures.

(1) Control is on worst case first, by searching the third words of
section one of /AMADAT/ backwards, and using the chain controls
there. First multiple DI under this search is made into the 63 word
profile.

(2) Continuing the search on chain and worst case the replacement
sequences are formed into /REPLAC/ and transmitted through
RCA110 routine.

3) /FAILDI/ is updated after each replacement sequence to show the
current search key which must undergo replacement.

20. NAMMAX
CALL NAMMAL

Create configuration 2 of /AMADAT/. Using failure candidate
information of the index-variable translation tape, it determines if
name should be stored. If not, the control word is made negative.
Uses DTCINP to read tape and /NAME/ to retrieve name and
pertinent information.

61

21.

22,

23.

NAREPK

CALL NAREPK (Address of name to pack into RCA110 format, number
of words to pack)
Packs into /NAME/ right justifying the words with four characters
and deleting trailing words that contain only blanks. The number
is modified to the number of words that contain the name after
packing.

NONPX

CALL NONPT - Called during merge run to read and transmit static
AMA data and static codes to malfunction set tape, and/PANDIS/
common,

PROMAX
X = PROMAS (INDEX code - 1).

Retrieve the final on/off state of variable with indicated index
code from the STATE record of AMA data tape. Operates on the
packed state list (36 variable /word) using implied position.
Operates from /DNSDAT/ placing on/off state in AC.

RAC11X - General routine to handle writing of RCA110-AMA tape.

CALL RAC110(N,IADD,NCNT)

N =1, read and write RCA110 control record (from card to tape). If
active run also write on malfunction set tape.

N = 2, Initialize buffer and store NCNT items of data from IADD into
/IRCA/.

N =3, Perform storage, without initializing if data to be stored exceeds
buffer area of /IRCA/ remaining, fill buffer, pack, write and continue
with CONT record.

N =4, Pack, and write any data remaining in /IRCA/

N =5, End RCA110-AMA tape

N = 6, Write RCA110 tape id (previously read under N = 1) on RCA110
tape.

RCAPAK
CALL RCAPAK (Buffer, number to pack, number of words after packing)
Each 7090 word upon entrance into this routine is assumed to

contain an RCA110A character word right-justified. The routine
creates full 6-character 7090 words for direct transmission to tape.

62

26. RCASWX

CALL RCASWT(1) - Write terminating id on old RCA110-AMA tape and
end tape.

CALL RCASWT(2) - Initialize new RCA110-AMA tape rewriting ID and
test-block identification.

27. RCATAX - IOCS tape control routine
CALL RCAQPN - open RCA110-AMA tape
CALL RCAWRT - (address of buffer, word count)
CALL RCAEQF - Write end-of-file and set end-of-tape bit
CALL MALWRT - (address of buffer, word count)
CALL MALE@F - Write end-of-file
CALL STARED - (address of buffer, words read)
CALL STACPY - Copy static data onto malfunction set tape.

(1) Terminate copy of MALFUNCTIONS
(2) Terminate copy of end-of-file

28. SDIAUX

CALL SDCNT (ICT) - pass through section 1 of /AMADAT/ setting ICT
to the number of single DI failures for this substep.

CALL SDIMAL (Address of single DI control word).
From /AMADAT/ store malfunction set number associated with
single DI into /DICON/.

CALL SDIMST (Address of single DI control word).
From /MALSET/ store address of malfunction set number.

CALL SDUNP (Address of bit-word configuration for DI),

Seperate bit-word configuration into separate word and bit words
in /DICON/.

63

29. SDIOUX

CALL SDIOUT

Operating on section 1 of /AMADAT / for single DI effects create
search keys for RCAI10-AMA tape.

(1) Translate malfunction set address to external
number and create control words.

(2) Determine total count of record.

(3) 1If static run, add 10000 to external
malfunction set numbers.

30. UNITS - File control cards for

(1) INDEX-variable translation tape
(from DNS-AMA-DTC).

(2) AMA data (from AMA program).

64

ead in card &
set run type
parameters
no. of blocks |

RCAOPN \

Open

Rewind Index-

i name & AMA

l effect-cause
tapes

ffect-failure

Verify ERRMES (1)
* title "No title"
Extract t-st
procedure
nuutber

AL10 (2)

Store Test

procedure
nurber

/ DINT

< Set up DI
traaslation
table

Figure A-1.

causes

Verify
* List

Extract &
place block #
in curreat

NOKPT
Copy atatic

B lé ‘(‘:‘&‘et

RCA
Store
Code

RCA110(4)
Clear
ouffers

block = |

Iaitialize
malfunction
sets

Main Program (1)

65

ERRMES (3)

“No List" /

DNSINP

Convert
Step
to BCD

CONVRT
Convert
Sub-step

CA110(2)
Store
Block-step

Sub-

Buffers

Zero
Counts of
DI's

DNSINP Reset
Multiple
Storage

H fm———

Verlfy / ERRMES(4) Exit

* State “__’\

RCASWT (1
Terminate
Tape

New Block

Records on
Tape

Figure A-2. Main Program (2)

66

‘Temporary

of ﬁ“a? g:at

Names for

Terminate
RCA L0
Tape

Figure A-3. Main Program (3)

67

Zero
Active
Profice

Verify
*Names ERRMES(2)

DTCINP
Read
Name

DITRAN
Translate

Complete
Print

8tore in

Single DI
Block

DIPART
Place in

code
Profile

Print

Name

Figure A-4. DINT

68

DION

Zero
on/oft
List

Begin
Search
on DI's

Place Conf
Word
into

DICON

End
of
DI Table

Figure A-5. DION

69

DTCINX

C-Name
Input
=1 =2
Read Names
Tape Transmission
Identify No R
Record Record
Yes
Set © Read
Dtetyp Record
Flag
Initialize
Identify
Buiffer
Read Record
Set
Return DTCTYP
Flag
Name
Record
Place
Name
in Common
Reduce
Name
Count

Figure A-6. DTCINX

70

Set
Ind! Em‘o Return

Unique

Flag Multiplel
Entry

Return

Compare
Words

Yes 1500

Flag
Multiple
Entry

Figure A-7. EFFCOM

71

EFFDET

Pick up
Number
of words

Eliminate
Stopped
Variables

Set (NDI)
common
to number

Pick up
index code

Pick up
DI Code

Store as
Separate

Figure A-8. EFFDET

72

EFFMUL

|

Pick up
Multiple
(NDI)

|

Retrieve
Position
Indices

l

Store
Multiple DI
Data

1

Update.
Storage
Index

MDIVPD

Update
" Position
Indices

Figure A-9. EFFMUL

73

MALPRT

Initialize
Print and
Tape

Mal Set

Count

Store Acd
Count 10, 000 to
Knts Set Count

Address

Print

and count of
Name

dALTAP(3)

Store for
Tape

Set #

Print
Title

Print
Title

Terminate
Tape

Figure A-10. MALPRT

74

Print

Set #

with
{Count)

CAUPAK

Set Mal
Compare Set ;.l:revlmu

Set
Malfunction

Compute
New b
Address

Malfunct .

¥
5

Update
Storage
Address

Return

Figure A-11. MALSTR

75

MALTAP

Data Write

‘Terminate
Tape

Data Store

Initialize
Buffer

Store

Update
Buffer

Figure A-12. MALTAP

76

MALTEM

Entry 1

Write
Malfunc
Set

No End
of Data

Rewind
Tape

Return

Figure A-13. MALTEM

77

Entry 2

=W
]

Record

CAUOPIC
Unpack

200

NAMMAL

DRINP
Read
AMADR

Zero
Start

Verify

Addresses

*Names

Store
Neg for
Refer.

Yes allure No
Cond.

No

Figure A-14. NAMMAL

DRINP
Read (2)
AMADR

End
of Names

Store
Address

Store
Name

Update
Name
Address

78

Store
Last
Address

Pick up
Original

and Set
Count = 0

No

Compare
Word
Position

Seperate
out and
Store
No
Seperate Set up Update
out and Zero Store Base
Store for Base Index
Update Update
Base Base
Index Index
Update
New
Index

Form

Zero Words
for O1d

Figure A-15. MOIREP

79

New & Store

MDIOUT

Multiple

Zero ist
63 Words
Loop Index = 1

Zero Min
Diff. & Set
Count = 1

add 10000
to Set
Number

600

MALTRS
Translate
Set #

Modify
63 Word
Block

RCA 110(3)
Output

Pick up '
Highest] °

Case
1300
MOITRS
T—.) Yes

Figure A-16. MDIOUT

80

Ptck up
Malfunction
Set ¢

RCA 10(3)
Store

nd
of Single
Di's

Figure A-17. SDIOUT

81

RCA 110

=1 =2 =3
100 400 800
Read Begin Continue
RCA 110 Buffer Data
D and Store Storage
500
Zero
Buffer
Position
© 600
Store Store
Data Data
2000
700
Update
Count

Figure A-18. RCA110

82

Fill
Buffer

RCAPAK
RCA 110
Pack

RCAWRT
Write
Record

Reduce
Input
Count

1700

Place
{Cont)
in Pos. 1

1800

=4 =5
2200 2400
Terminate
Tape
Write

RCAPAR End-Files
RCA tio
Pack

RCAWRT
Write
Record

APPENDIX B: DATA MAPS AND STORAGE

Data word configurations and referencing mechanisms.

Data from the AMA and DTC-AMA program are condensed into
several types of packed format to facilitate data correlation, search,
and reordering techniques necessary to produce RCAI110 search tapes.

The major storage area for correlation of data is the labeled
common /AMADAT/ which has been assigned 17000 decimal locations.
It has two configurations.

/AMADAT/ - Configuration 1: Used during processing for
entire test procedure to develop search keys and
a unique malfunction set list. The data block has
three separate sections.

Section 1: Begins at AMADAT (1). This is an n-entry
table having 3 elements/entry where n is equal to the
number of active DI's in the test procedure. The
configuration of the 3 word entries are (refer to
Figure B-1).

Word 1: DI binary number - malfunction set
reference.

Word 2: DI bit and position configuration.

Word 3: Chaining control for multiple DI failure
effect storage.

Since the DI's are assigned the first index codes by
the preceding programs, information is located in
this table by implied position based on the three word
size).

83

The decrements of words 1 and words 2 of the entries
remain constant for entire run after initial setup.
Words 3 and the addresses of words 1 are changed
during processing of each substep.

Section 2: Begins after the last entry in the above
single DI table. This section is reconstructed for
each substep. Access is gained to it through the word
3 items in each of the above entries. It gives the bit-
word configuration for the multiple DI failure effects
with the correlated malfunction set information. Its
length is variable for each substep and as each new
multiple DI effect is encountered it is stored in -the
next available storage locations (see Figure B-2).

Section 3: The creation of this section begins with the
first substep in the test procedure and is continually
built up during the entire processing. This is the
malfunction set section. The first entry in this section
is at cell 17000 of AMADAT and storage proceeds
backward. Word 1 of each entry is a control word.
Word 2-N are the packed forms of the malfunction sets.

When reference is made to a malfunction set in

sections 1 and 2, the reference is made to the address

in the table. The control word actually contains the
malfunction set number that appears on tape and hard
copy. For example, a DI stored at entry 4 of section

1 has malfunction set 16554. This means that AMADAT
(16554) contains in its decrement the malfunction set
which is actually associated with the DI. (See Figure B-3).

/AMADAT / - Configuration 2: Set up and used at end of processing
of AMA data for complete test procedure.

Purpose is to translate the malfunction sets from the
internal index codes to the external model names,
Core consists of two sections and is set up by the
reading of the index code - name translation tape.

Section 1 begins at AMADAT (1) and reference is made
by implied position of index code. The contents of each
of the cells contains a reference address into the
section indicating the beginning of the external name.

84

The address of the preceding word gives the address of the
preccding name. The subtraction of the two gives the
number of words in the name. A negative word in the
section indicates that the variable was not a failure
candidate; therefore its name is not stored, and any
reference to it is not translated.

85

Entry (1) — Word 1 Word 2 Word 3
Entry (2) R
(AMADAT®#4)) | .}]

Entry (N) ——»{ Word 1
AMADAT (3*N-2) R
Word 1: Configuration

l P] D T A

A - Malfunction set number associated with the single effect
failure on DI indicated in Decrement

D - Binary number for DI, directly related to model name, ie.,
if DI108, Decrement contains binary representation of 108

P - Only sign position is used; if negative, the DI has not been
processed for the current substep

Figure B-1. /AMADAT/ - single DI configuration.

86

Word 2:

S 11 {12 35

The woi‘d has two sections.

S-11: Indicates that the bit for this DI in its 63 word profile,
is contained in the Mth word of the profile.

12-35: Each bit indicates if the DI is turned on in this section.
Storage is based on the fact that word 1 contains DI's
23-0 in that order, word 2 contains DI's 41-24 etc.

Word 3: When multiple effect DI failures occur, the effects of
the same level can be identified thru use of word 3.
The ith entry in the above table gives the storage for i.

DI's multiple effect.

O D (0] A

A - Gives the address (relative to the beginning of AMADAT
of the first word of the first multiple effect information
of the i th level).

D - Decrement gives the last item of the ith level.

Figure B-1. /AMADAT/ - single DI configuration (Continued).

87

Each item is an entry for a unique multiple failure effect for a
substep. It may consist of 2 to 64 words. Each item has a lead
control word.

S 516 20121 35

S - 5: Number of words in profile to express all the
DI's in this effect.

6 - 20: Malfunction set associated with this failure effect.

21- 35: The address of the next storage location containing
an effect failure of the same level. (If 0, this is
the last).

The succeeding words look exactly like the word 2 items of the first
entry, except for minimal storage, there may be more than one bit
turned on.

Example: Multiple effect failure which affects 4 DI's whose external
numbers are 1, 24, 47, 62, has the configuration:

3 | malfunction set | next 4-level failure

1]0 010
2110 01
3| 0——— 01000000000000000000000

Figure B-2. /AMADAT/ multiple DI failure effect configuration.

88

Control Word format:

A - # of words associated with the malfunction set.

D - The external malfunction set number.

Malfunction Set Configuration Word.

Index. Index.
i i+l

S 17 |18 35

Each index code is stored as an 18 bit binary number. The second
index code for a set may be zero.

Example: The malfunction stored at location 16554 is external
set 5 and has 5 components as possible failures, whose
index codes are 100, 103, 1004, 52 and 73

Location:
16551 73 0
16552 1004 52
16553 100 103
16554 5 3

The next unique malfunction set encountered is stored starting
in cell 16550.

Figure B-3. Malfunction sets storage.

89

1I. Labeled Common
Major communication between routines, tape, and /AMADAT/ is
accomplished through a set of labeled commons with definite functions and -

usages.

1. 1/© Control - Data passing between tape and core goes into/out
of two common sets.

/DNSDAT/AMATYP,DNSCNT, DNSDAT(250)

Data generated by DTC and AMA programs is placed in
this data region.

/IRCA/IRCA(255) data to be transmitted to any RCA110 tape is
first stored and packed in this common.

2, Data Control Commons for AMADAT
/AMACTR /NSDI - Number of active DI's in procedure.
NMDI - Number of multiple DI's for substep.

NMP@S- Current position (+1) for storage of multiple
DI failure effect storage.

/MALMAS/MLSETS - Number of malfunctions in test procedure.

‘MLP@ST - Current position in storage of malfunction

sets.
3. | Run Control Commons
/MSA/MSA - type run 1, static
2, active
3, merge

/IDDAT /TESTP - test procedure number (BCD)
BLOCK(2) - BLOC and block number (BCD)

STEP - Step (BCD)

90

4,

SBSTEP

/PANDIS/PARDIS(63)

NONPAR (63)

DIPNQF (63)

Communication Commons

- Substep (BCD)

Active DI Codes

Static DI codes

i

On/off states for active DI's

/FAILDI/NDI - Number of DI's referenced by EFFECT record.

NCPD - Reference position of single DI effect or
number of words involved in multiple DI effect.

IDUP - Negative indicates the effect has heen encountered

previously in processing (signal to extend
malfunction set data).

DICODE -

/MDICON/MDIWRD

MDIMAL

MDIADD

MDIP®S

Multiple DI effect configuration for current
EFFECT record, or replacement search key.

/MALSET/MALCNT-

MALSET
MALP@®S

MALCTT

Number of words in multiple DI
configuration storage.

Malfunction set address associated with
effect.

Address of multiple effect of same level.
Position in storage of configuration.
Number of words/components associated
with malfunction set currently being
processed.

Address of set or actual external number.

Address of set.

Malfunction set control word.

91

/NAME/DTCTYP -~ type of data from DTC index-variable
generated tape.

If = 1, beginning of names.

, end-of names.

= 3, name.
NAMLEN - numbér of words in name
NAME(8) - name in either 7090 form or RCA110 form.
INDEX - Internal index code and failure candidate
information.

/DIC®N /DIBIN - corresponding binary number for DI
DICON - total configuration positioning for DI
DIBIT - Bit configuration
DIWRD - Word positioning in 63 word profile.
DIMAL - Malfunction set address associated with

single DI effect,

/REPLAC/REPLAC (129) search key replacement words for
multiple effect failures.

92

I. Index-variable translation tape is outlined with DNS-AMA-DTC Program
(3843A). :

II. AMA data tape is outlined with AMA program (3998).
HI. RCA110-AMA tape - RCA 110 format (4 characters per word).
1. Record 1 - RCA110 Identification (16 words)

2. Record 2 - Word 1 TEST

Word 2 Test Number
Word 3 BLOC
Word 4 First block in tape

Words 5-67 - 63 word profile for active DI's
Words 68-130 - 63 word profile for static DI's

3. Data beginning with record 3 is separated into logical blocks for sub-
step; two types of logical records;

Record 1: Identification and single DI information.
Word 1: BLOC
Word 2: Block number
Word 3: Step number
Word 4: Sub-step number
Word 5: Number of single DI effects in this record.

Words 6-N in groups of two for as many groups as
indicated by word 5.

Word 1 of group - binary representation of DI

Word 2 malfunction set number

93

Record 2: Multiple effect information
Word 1: MULT
Word 2: Number of multiple effects in record.
Words 3 - 65: 63 word profile for first multiple effect.
Word 66 : Associated malfunction sets for above.

Word 67 : Begins replacement word keys. Each
replacement key has the following format:

Word 1: Number of replacements to make.
Words 2-N: Groups of two words/replacement
First word is position of word to replace.
Second word is the replacement word.

Word N+1: Malfunction set associated with 63-word
profile after replacement. Sequence is
repeated for as many replacements as
indicated by word 2 (-1).

If either of the two logical records require more

than one physical record, the first word of the

physical record is CONT and data continues in Word 2.

4. The tape terminates with either
Word 1 : ENDB
Word 2 : Block number (last in tape)

Words 3-6: Fill in

which indicates that another physical tape follows
for the test procedure, or

Word 1 : ENDT

94

Iv.

Word 2

Words 3-6:

Malfunction Set Tape.

1. Record 1
2. Record 2

3. Records 3-N

N

. Record N+1

. Record N+1 to M;

(%7

: Test Number
Fill in

which indicates end of test procedure. Tapes
terminate with double end-of-file marks.

RCA110 Identification (16 words)

Word 1 : TEST

Word 2 : Test Number

Words 3-6: Fill in

AMA static data in the same form as the two logical
records of III-3 with the four words of identification.
Words 1-2: MALFUNCTIONS

Words 3-6: Fill in

Malfunction set data of the form:

One logical record/malfunction set

Word 1 : Set Number

Word 2 : Number of components

Words 3-K: For each component, 6 words (blank
words if name does not fill 6 words)

6. Tape terminates with a double end-of-file.

Static data tape is generated by the program under the static option and
contains information of both tapes III and IV. Tape is only used with the

7090 program.

Record 1
Record 2
Records 3-N
Record N+1
Records N+2-M:

RCA110 identification.

63 7090 words for static profile.
AMA in form described in III-3.
Same as IV-4.

Same as IV-5.

95

